VI Convegno degli Ostracodologi Italiani
Trieste 20-21 aprile 2012
Programma e riassunti
a cura di Deborah Arbulla, Nevio Pugliese, Gianguido Salvi
Late Miocene ostracods from the Solimões Formation (Western Amazonia): geochemical and palaeontological analyses

Marco Caporaletti1, Martin Gross2, Werner E. Piller1

1Institute of Earth Sciences, Karl-Franzens-Universität Graz, Heinrichstrasse 26, 8010 Graz, Austria; 2Department for Geology & Palaeontology, Universalmuseum Joanneum, Weinzöttlstrasse 16, 8045 Graz, Austria

The Pebas system represents a huge inland water system that characterized Western Amazonia from the Oligocene-Miocene boundary (about 23 Ma) until the Late Miocene. The Andean uplift caused its disappearance and it was replaced by the onset of the modern Amazon setting during the early Pliocene. The Late Miocene of the Pebas system presents interesting palaeobiological peculiarities, with spectacular endemism and diversity. Among aquatic biota, gastropods and bivalves show noteworthy and well-studied speciation phenomena (e.g. Anderson et al., 2010). Ostracods are known by extensive radiations (in particular the genus Cyprideis) and a high degree of endemism, but their level of documentation and knowledge it is not as satisfying as for other organisms.

The environmental characteristics of the south-eastern edge (Eirunepé area) of the Pebas system were studied by a taxonomical and geo-
chemical analysis of the ostracod fauna. The aim was to provide a better comprehension of the palaeoenvironmental conditions with a particular focus on salinity conditions and the possible occurrence of marine ingressions in this area of the Pebas system.

Five outcrops belonging to the upper Solimões Formation (Upper Miocene) were studied (Gross et al., 2012). Ostracod associations resulted to be highly endemic and characterized by a moderate diversity. A total of 19 species was recognized and about 60% of the ostracods are indicative of a freshwater environment (primarily Penthesilena and Cytheridella). The taxa usually considered to be associated with a marginal marine setting (mainly Cypridina) represent about 40%.

A total of 50 carbon and oxygen stable isotope measurements were carried out on five ostracod species (adult and juvenile specimens): Cyprideis pebasae, Cyprideis graciosa, Rhadinocytherura amazonensis, Cytheridella danielopoli, Penthesilena olivencæ. All the valves were well-preserved and not affected by diagenesis. All the isotopic analyses furnished very negative values with \(\delta^{13}C \) ranging from -8.4% to -14.3% and \(\delta^{18}O \) ranging from -6.5% to -9.8%. Such negative values are compatible with the isotopic signatures of freshwater carbonates or lacustrine environments (Leng & Marshall, 2004) and are consistent with other carbon and oxygen stable isotopes results obtained in the Miocene of Pebas area (Wesselingh et al., 2006).

Considering both the taxonomical and geochemical analyses, there are no hints on the presence of brackish water or marine influxes in the study area (as already proposed in Gross et al., 2011): the taxa usually associated to marginal marine settings are probably successfully adapted to pure freshwater settings, which is also well documented for modern Cypridina in other areas (Lake Tanganyika; Wouters & Martens, 2007).

References

Gross, M., Ramos M.I., Caporaletti M., Piller, W.E., 2012. From the edge of the Pebas System - Ostracods (Crustacea) and their palaeoenvironmental implication (Late Miocene; Solimões Formation; Western Amazonia). Submitted.

